

Brussels, 8.10.2014 COM(2014) 617 final/2

ANNEXES 1 to 4

CORRIGENDUM

This document corrects document COM(2014)617 final of 6.10.2014 Concerns EN, DE, BG, ES, IT and SV (coverpage - reference and date were missing)

ANNEXES

Methodology for the calculation and reporting of the life cycle greenhouse gas intensity of fuels and energy by fuel suppliers

to the

Proposal for a Council Directive on laying down calculation methods and reporting requirements pursuant to Directive 98/70/EC of the European Parliament and of the Council relating to the quality of petrol and diesel fuels

{SWD(2014) 295 final} {SWD(2014) 296 final}

EN EN

Annex I

Methodology for the calculation and reporting of the life cycle greenhouse gas intensity of fuels and energy by fuel suppliers

Part 1:

When calculating a fuel supplier's greenhouse gas intensity of fuels and energy:

- 1. The greenhouse gas intensity for fuels and energy is expressed in terms of grams of carbon dioxide equivalent per Mega Joule of fuel (gCO₂eq/MJ);
- 2. The greenhouse gases taken into account for the purposes of calculating the greenhouse gas intensity of fuel is carbon dioxide (CO_2), nitrous oxide (N_2O) and methane (CH_4). For the purpose of calculating CO_2 equivalence, emissions of those gases are valued in terms of CO_2 equivalent emissions as follows:

- 3. Emissions from the manufacture of machinery and equipment utilized in extraction, production, refining and consumption of fossil fuels shall not be taken into account in the greenhouse gas calculation.
- 4. A fuel supplier's greenhouse gas intensity from the life cycle of all fuels supplied shall be calculated in accordance with the formula below:

A supplier's greenhouse gas intensity
$$_{(\#)} = \frac{\sum_{x} (GHGi_{x} \times AF \times MJ_{x}) - UER}{\sum_{x} MJ_{x}}$$

Where:

- (a) "#"means the supplier's identification (person liable to pay duty) defined in Regulation (EC) No 684/2009 as the Trader Excise Number (SEED registration number or VAT ID number in Table 1 point 5 (a) of Annex I to that Regulation for Destination Type codes 1, 2, 3, 4, 5 and 8) which is also the entity liable to pay the excise duty in accordance with Article 8 of Council Directive 2008/118/EC at the time excise duty became chargeable in accordance with Article 7(2) of Directive 2008/118/EC. If this identification is not available Member States shall ensure that an equivalent means of identification is established in accordance with a national excise duty reporting scheme.
- (b) "x" means the fuel and energy types falling within the scope of this Directive as expressed in Table 1 point17(c) of Annex I to Regulation (EC) No 684/2009. If these data are not available, Member States shall collect equivalent data in accordance with a nationally established excise duty reporting scheme.
- (c) "MJ_x" means the total energy supplied and converted from reported volumes of fuel "x" expressed in Mega Joules. This is calculated as follows:

The quantity of each fuel per fuel type

Is derived from data reported pursuant to Table 1 – point 17 (d), (f), and (o) of Annex I to Regulation (EC) No 684/2009. Biofuel quantities are converted to

their lower-heat-value energy content pursuant to the energy densities set out in Annex III to Directive 2009/28/EC¹. Quantities of fuels from non-biological origin are converted to their lower-heat-value energy content pursuant to energy densities set out in Appendix 1 to the JEC Well-to-Tank report².

Simultaneous co-processing of fossil fuels and biofuels

Processing includes any modification during the life cycle of a fuel or energy supplied causing a change to the molecular structure of the product. The addition of denaturant does not fall under this processing. The volume of biofuels co-processed with fuels from non-biological origin reflects the post-processing state of the biofuel. The energy quantity of the co-processed biofuel is determined according to the energy balance and efficiency of the co-processing process as set out in Annex IV (17) of Directive 98/70/EC.

Where multiple biofuels are blended with fossil fuels the quantity and type of each biofuel is taken into account in the calculation and reported by suppliers to the Member States.

The volume of biofuel supplied that does not meet the requirements of Article 7b(1) of Directive 98/70/EC is counted as fossil fuel.

E85 petrol-ethanol blend shall be calculated as a separate fuel for the purpose of Article 6 of Regulation (EC) No 443/2009 of the European Parliament and of the Council³.

If quantities are not collected pursuant to Regulation (EC) No 684/2009, Member States shall collect equivalent data in accordance with a nationally established excise duty reporting scheme.

Quantity of electric energy consumed

Is the amount of electricity consumed in road vehicles or motorcycles where an energy supplier reports this amount of energy to the relevant authority in the Member State in accordance with the following formula:

Electric energy consumed = distance travelled (km) x electric energy consumption efficiency (MJ/km).

(d) UER

"UER" is the upstream emission reduction of greenhouse gases claimed by a fuel supplier measured in gCO₂eq if quantified and reported in accordance with the following requirements:

OJ L 140, 5.6.2009, p. 1.

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (OJ L 140, 5.6.2009, p.16).

http://iet.jrc.ec.europa.eu/about-jec/sites/about-

jec/files/documents/report_2013/wtt_report_v4_july_2013_final.pdf

Eligibility

Voluntary greenhouse gas emission reductions at oil and gas production and extraction sites shall only be applied to the upstream emission's part of the default values for petrol, diesel, CNG or LPG.

Upstream greenhouse gas emission reductions originating from any country may be counted as a reduction in greenhouse gas emissions against fuels from any feedstock source supplied by any fuel supplier.

Upstream greenhouse gas emission reductions shall only be counted if they are associated with projects that have started after 1 January 2011

It is not necessary to prove that upstream emission reductions would not have taken place without the Article 7a reporting requirement.

Calculation

Greenhouse gas reductions associated with oil and gas upstream emissions will be estimated and validated in accordance with principles and standards identified in International Standards and in particular ISO 14064, ISO 14065 and ISO 14066.

The UERs and baseline emissions are to be monitored, reported and verified in accordance with ISO 14064 and providing results of equivalent confidence of Regulation (EU) No 600/2012 and Regulation (EU) No 601/2012. The verification of methods for estimating UERs must be done in accordance with ISO 14064-3 and the organisation verifying this must be accredited in accordance with ISO 14065.

(e) "GHGix" is the unit greenhouse gas intensity of fuel "x" expressed in gCO₂eq/MJ. Fuel suppliers shall define the unit intensity of each fuel as follows:

<u>Greenhouse gas intensity of fuels</u> from a non-biological origin is the "weighted unit life cycle greenhouse gas intensity" per fuel type listed in the last column of the table under Part 2 point (5) of this Annex.

Electrical energy is calculated as described in Part 2 point (6) below.

Greenhouse gas intensity of biofuels

The greenhouse gas intensity of biofuels meeting the requirements of Article 7b(1) of Directive 98/70/EC is calculated in accordance with Article 7d of that Directive. In case data on the life cycle greenhouse gas emissions of biofuels was obtained in accordance with an agreement or scheme that has been the subject of a decision pursuant Article 7c(4) of Directive 98/70/EC covering Article 7b(2) of that Directive this data is also be used to establish the greenhouse gas intensity of biofuels under Article 7b(1) of that Directive. The greenhouse gas intensity for biofuels not meeting the requirements of Article

7b(1) of Directive 98/70/EC is equal to the greenhouse intensity of the respective fossil fuel derived from conventional crude oil or gas.

<u>Simultaneous co-processing of fuels</u> from non-biological origin and <u>biofuels</u>

The greenhouse gas intensity of biofuels co-processed with fossil fuels shall reflect the post-processing state of the biofuel.

(f) "AF" represents the adjustment factors for powertrain efficiencies:

Predominant conversion technology	Efficiency factor
Internal combustion engine	1
Battery electric powertrain	0.4
Hydrogen fuel cell electric powertrain	0.4

Part 2: Reporting by fuel suppliers

(1) Upstream Emissions reductions (UERs)

In order for upstream emissions reductions to be eligible for the purposes of this methodology fuel suppliers shall report to the authority designated by the Member States the:

- (i) starting date of the project which must be after 1 January 2011;
- (ii) annual emission reductions in gCO₂eq;
- (iii) duration for which the claimed reductions occurred;
- (iv) project location closest to the source of the emissions in latitude and longitude coordinates in degrees to the fourth decimal place;
- (v) baseline annual emissions prior to installation of reduction measures and annual emissions after the reduction measures have been implemented in gCO₂eq/MJ of feedstock produced;
- (vi) non-reusable certificate number uniquely identifying the scheme and the claimed greenhouse gas reductions
- (vii) non-reusable number uniquely identifying the calculation method and the associated scheme;
- (viii) where the project relates to oil extraction, the average annual historical and reporting year gas-to-oil ratio (GOR) in solution, reservoir pressure, depth and well production rate of the crude oil.

(2) Origin

"Origin" means the feedstock trade name listed in Part 2 point (7) of this Annex but only where fuel suppliers hold the necessary information by virtue of (i) being a person or undertaking importing crude oil from third countries or receiving a crude oil delivery from another Member State pursuant to Article 1 of Council Regulation (EC) No 2964/95; or (ii) arrangements to share information agreed with other fuel suppliers. In all other cases, origin shall refer to whether the fuel is of EU or non-EU origin.

The information collected and reported by fuel suppliers to the Member States concerning the origin of fuels shall be confidential but this shall not prevent the publication by the Commission of general information or information in summary form which does not contain details relating to individual undertakings.

For biofuels origin means the biofuel production pathway set out in Annex IV of Directive 98/70/EC.

Where multiple feedstocks are used, the quantity in metric tonnes of finished product per type of each feedstock produced in the respective processing facility during the reporting year shall be provided.

(3) Place of purchase

"Place of purchase" means the country and name of the processing facility where the fuel or energy underwent the last substantial transformation used to confer the origin of the fuel or energy in accordance with Commission Regulation (EEC) No 2454/93.

(4) Small and medium-sized enterprises

By way of derogation for fuel suppliers that are small and medium-sized enterprises, "origin" and "place of purchase" is either EU or non-EU, as appropriate, irrespective of whether they import crude oil or they supply petroleum oils and oils obtained from bituminous materials.

(5) 2010 average life cycle greenhouse gas default values for fuels other than biofuels and electric energy

Raw material source and process	Fuel or energy type placed on the market	Life cycle unit GHG intensity (gCO ₂ eq/MJ)	Weighted life cycle unit GHG intensity (gCO ₂ eq/MJ)
Conventional crude	Petrol	93.2	
Natural Gas-to- Liquid		94.3	93.3
Coal-to-Liquid		172	
Natural bitumen		107	
Oil shale		131.3	
Conventional crude	Diesel or gasoil	95	
Natural Gas-to- Liquid		94.3	95.1
Coal-to-Liquid		172	
Natural bitumen		108.5	
Oil shale		133.7	

Any fossil sources	Liquefied Petroleum Gas in a spark ignition engine	73.6	73.6
Natural Gas, EU mix	Compressed Gas in a spark ignition engine	69.3	69.3
Natural Gas, EU mix	Liquefied Gas in a spark ignition engine	74.5	74.5
Sabatier reaction of hydrogen from non-biological renewable energy electrolysis	Compressed synthetic methane in a spark ignition engine	3.3	3.3
Natural gas using steam reforming	Compressed Hydrogen in a fuel cell	104.3	104.3
Electrolysis fully powered by non- biological renewable energy	Compressed Hydrogen in a fuel cell	9.1	9.1
Coal	Compressed Hydrogen in a fuel cell	234.4	234.4
Coal with Carbon Capture and Storage of process emissions	Hydrogen in a fuel cell	52.7	52.7
Waste plastic derived from fossil feedstocks	Petrol, diesel or gasoil	86	86

(6) Electrical energy

For the reporting by energy suppliers of electricity consumed by electric vehicles and motorcycles, Member States should calculate national average life cycle default values in accordance with appropriate International Standards.

Alternatively Member States may permit their suppliers to establish unit greenhouse gas intensity values (gCO₂eq/MJ) for electricity from data reported by Member States on the basis of:

- (i) Regulation (EC) No 1099/2008 of the European Parliament and of the Council of 22 October 2008 on energy statistics or,
- (ii) Regulation (EU) No 525/2013 of the European Parliament and of the Council on a mechanism for monitoring and reporting greenhouse gas emissions and for reporting other information at national and Union level relevant to climate change or,
- (iii) Commission delegated regulation (EU) No 666/2014 establishing substantive requirements for a Union inventory system and taking into account changes in the global warming potentials and internationally agreed inventory guidelines pursuant to Regulation (EU) No 525/2013 of the European Parliament and of the Council.

(7) Feedstock trade name

Country	Feedstock trade name	API	Sulphur (wt %)
Abu Dhabi	Al Bunduq	38.5	1.1
Abu Dhabi	Mubarraz	38.1	0.9
Abu Dhabi	Murban	40.5	0.8
Abu Dhabi	Zakum (Lower Zakum/Abu Dhabi Marine)	40.6	1
Abu Dhabi	Umm Shaif (Abu Dhabi Marine)	37.4	1.5
Abu Dhabi	Arzanah	44	0
Abu Dhabi	Abu Al Bu Khoosh	31.6	2
Abu Dhabi	Murban Bottoms	21.4	NOT AVAILABLE (NA)
Abu Dhabi	Top Murban	21	NA
Abu Dhabi	Upper Zakum	34.4	1.7
Algeria	Arzew	44.3	0.1

Country	Feedstock trade name	API	Sulphur (wt
			%)
Algeria	Hassi Messaoud	42.8	0.2
Algeria	Zarzaitine	43	0.1
Algeria	Algerian	44	0.1
Algeria	Skikda	44.3	0.1
Algeria	Saharan Blend	45.5	0.1
Algeria	Hassi Ramal	60	0.1
Algeria	Algerian Condensate	64.5	NA
Algeria	Algerian Mix	45.6	0.2
Algeria	Algerian Condensate (Arzew)	65.8	0
Algeria	Algerian Condensate (Bejaia)	65.0	0
Algeria	Top Algerian	24.6	NA
Angola	Cabinda	31.7	0.2
Angola	Takula	33.7	0.1
Angola	Soyo Blend	33.7	0.2
Angola	Mandji	29.5	1.3
Angola	Malongo (West)	26	NA
Angola	Cavala-1	42.3	NA
Angola	Sulele (South-1)	38.7	NA
Angola	Palanca	40	0.14
Angola	Malongo (North)	30	NA
Angola	Malongo (South)	25	NA
Angola	Nemba	38.5	0
Angola	Girassol	31.3	NA
Angola	Kuito	20	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Angola	Hungo	28.8	NA
Angola	Kissinje	30.5	0.37
Angola	Dalia	23.6	1.48
Angola	Gimboa	23.7	0.65
Angola	Mondo	28.8	0.44
Angola	Plutonio	33.2	0.036
Angola	Saxi Batuque Blend	33.2	0.36
Angola	Xikomba	34.4	0.41
Argentina	Tierra del Fuego	42.4	NA
Argentina	Santa Cruz	26.9	NA
Argentina	Escalante	24	0.2
Argentina	Canadon Seco	27	0.2
Argentina	Hidra	51.7	0.05
Argentina	Medanito	34.93	0.48
Armenia	Armenian Miscellaneous	NA	NA
Australia	Jabiru	42.3	0.03
Australia	Kooroopa (Jurassic)	42	NA
Australia	Talgeberry (Jurassic)	43	NA
Australia	Talgeberry (Up Cretaceous)	51	NA
Australia	Woodside Condensate	51.8	NA
Australia	Saladin-3 (Top Barrow)	49	NA
Australia	Harriet	38	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Australia	Skua-3 (Challis Field)	43	NA
Australia	Barrow Island	36.8	0.1
Australia	Northwest Shelf Condensate	53.1	0
Australia	Jackson Blend	41.9	0
Australia	Cooper Basin	45.2	0.02
Australia	Griffin	55	0.03
Australia	Buffalo Crude	53	NA
Australia	Cossack	48.2	0.04
Australia	Elang	56.2	NA
Australia	Enfield	21.7	0.13
Australia	Gippsland (Bass Strait)	45.4	0.1
Azerbaijan	Azeri Light	34.8	0.15
Bahrain	Bahrain Miscellaneous	NA	NA
Belarus	Belarus Miscellaneous	NA	NA
Benin	Seme	22.6	0.5
Benin	Benin Miscellaneous	NA	NA
Belize	Belize Light Crude	40	NA
Belize	Belize Miscellaneous	NA	NA
Bolivia	Bolivian Condensate	58.8	0.1
Brazil	Garoupa	30.5	0.1
Brazil	Sergipano	25.1	0.4
Brazil	Campos Basin	20	NA
Brazil	Urucu (Upper Amazon)	42	NA
Brazil	Marlim	20	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Brazil	Brazil Polvo	19.6	1.14
Brazil	Roncador	28.3	0.58
Brazil	Roncador Heavy	18	NA
Brazil	Albacora East	19.8	0.52
Brunei	Seria Light	36.2	0.1
Brunei	Champion	24.4	0.1
Brunei	Champion Condensate	65	0.1
Brunei	Brunei LS Blend	32	0.1
Brunei	Brunei Condensate	65	NA
Brunei	Champion Export	23.9	0.12
Cameroon	Kole Marine Blend	34.9	0.3
Cameroon	Lokele	21.5	0.5
Cameroon	Moudi Light	40	NA
Cameroon	Moudi Heavy	21.3	NA
Cameroon	Ebome	32.1	0.35
Cameroon	Cameroon Miscellaneous	NA	NA
Canada	Peace River Light	41	NA
Canada	Peace River Medium	33	NA
Canada	Peace River Heavy	23	NA
Canada	Manyberries	36.5	NA
Canada	Rainbow Light and Medium	40.7	NA
Canada	Pembina	33	NA
Canada	Bells Hill Lake	32	NA
Canada	Fosterton Condensate	63	NA

Country	Feedstock trade name	API	Sulphur (wt %)
Canada	Rangeland Condensate	67.3	NA
Canada	Redwater	35	NA
Canada	Lloydminster	20.7	2.8
Canada	Wainwright- Kinsella	23.1	2.3
Canada	Bow River Heavy	26.7	2.4
Canada	Fosterton	21.4	3
Canada	Smiley-Coleville	22.5	2.2
Canada	Midale	29	2.4
Canada	Milk River Pipeline	36	1.4
Canada	Ipl-Mix Sweet	40	0.2
Canada	Ipl-Mix Sour	38	0.5
Canada	Ipl Condensate	55	0.3
Canada	Aurora Light	39.5	0.4
Canada	Aurora Condensate	65	0.3
Canada	Reagan Field	35	0.2
Canada	Synthetic Canada	30.3	1.7
Canada	Cold Lake	13.2	4.1
Canada	Cold Lake Blend	26.9	3
Canada	Canadian Federated	39.4	0.3
Canada	Chauvin	22	2.7
Canada	Gcos	23	NA
Canada	Gulf Alberta L & M	35.1	1
Canada	Light Sour Blend	35	1.2
Canada	Lloyd Blend	22	2.8
Canada	Peace River Condensate	54.9	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Canada	Sarnium Condensate	57.7	NA
Canada	Saskatchewan Light	32.9	NA
Canada	Sweet Mixed Blend	38	0.5
Canada	Syncrude	32	0.1
Canada	Rangeland – South L & M	39.5	0.5
Canada	Northblend Nevis	34	NA
Canada	Canadian Common Condensate	55	NA
Canada	Canadian Common	39	0.3
Canada	Waterton Condensate	65.1	NA
Canada	Panuke Condensate	56	NA
Canada	Federated Light and Medium	39.7	2
Canada	Wabasca	23	NA
Canada	Hibernia	37.3	0.37
Canada	BC Light	40	NA
Canada	Boundary	39	NA
Canada	Albian Heavy	21	NA
Canada	Koch Alberta	34	NA
Canada	Terra Nova	32.3	NA
Canada	Echo Blend	20.6	3.15
Canada	Western Canadian Blend	19.8	3
Canada	Western Canadian Select	20.5	3.33
Canada	White Rose	31.0	0.31
Canada	Access	22	NA
Canada	Premium Albian Synthetic	20.9	NA

Country	Feedstock trade name	API	Sulphur (wt %)
	Heavy		
Canada	Albian Residuum Blend (ARB)	20.03	2.62
Canada	Christina Lake	20.5	3
Canada	CNRL	34	NA
Canada	Husky Synthetic Blend	31.91	0.11
Canada	Premium Albian Synthetic (PAS)	35.5	0.04
Canada	Seal Heavy(SH)	19.89	4.54
Canada	Suncor Synthetic A (OSA)	33.61	0.178
Canada	Suncor Synthetic H (OSH)	19.53	3.079
Canada	Peace Sour	33	NA
Canada	Western Canadian Resid	20.7	NA
Canada	Christina Dilbit Blend	21.0	NA
Canada	Christina Lake Dilbit	38.08	3.80
Chile	Chile Miscellaneous	NA	NA
Chad	Doba Blend (Early Production)	24.8	0.14
Chad	Doba Blend (Later Production)	20.8	0.17
China	Taching (Daqing)	33	0.1
China	Shengli	24.2	1
China	Beibu	NA	NA
China	Chengbei	17	NA
China	Lufeng	34.4	NA
China	Xijiang	28	NA

Country	Feedstock trade name	API	Sulphur (wt %)
China	Wei Zhou	39.9	NA
China	Liu Hua	21	NA
China	Boz Hong	17	0.282
China	Peng Lai	21.8	0.29
China	Xi Xiang	32.18	0.09
Colombia	Onto	35.3	0.5
Colombia	Putamayo	35	0.5
Colombia	Rio Zulia	40.4	0.3
Colombia	Orito	34.9	0.5
Colombia	Cano-Limon	30.8	0.5
Colombia	Lasmo	30	NA
Colombia	Cano Duya-1	28	NA
Colombia	Corocora-1	31.6	NA
Colombia	Suria Sur-1	32	NA
Colombia	Tunane-1	29	NA
Colombia	Casanare	23	NA
Colombia	Cusiana	44.4	0.2
Colombia	Vasconia	27.3	0.6
Colombia	Castilla Blend	20.8	1.72
Colombia	Cupiaga	43.11	0.082
Colombia	South Blend	28.6	0.72
Congo (Brazzaville)	Emeraude	23.6	0.5
Congo (Brazzaville)	Djeno Blend	26.9	0.3

Country	Feedstock trade name	API	Sulphur (wt %)
Congo (Brazzaville)	Viodo Marina-1	26.5	NA
Congo (Brazzaville)	Nkossa	47	0.03
Congo (Kinshasa)	Muanda	34	0.1
Congo (Kinshasa)	Congo/Zaire	31.7	0.1
Congo (Kinshasa)	Coco	30.4	0.15
Cote d'Ivoire	Espoir	31.4	0.3
Cote d'Ivoire	Lion Cote	41.1	0.101
Denmark	Dan	30.4	0.3
Denmark	Gorm	33.9	0.2
Denmark	Danish North Sea	34.5	0.26
Dubai	Dubai (Fateh)	31.1	2
Dubai	Margham Light	50.3	0
Ecuador	Oriente	29.2	1
Ecuador	Quito	29.5	0.7
Ecuador	Santa Elena	35	0.1
Ecuador	Limoncoha-1	28	NA
Ecuador	Frontera-1	30.7	NA
Ecuador	Bogi-1	21.2	NA
Ecuador	Napo	19	2
Ecuador	Napo Light	19.3	NA

Country	Feedstock trade name	API	Sulphur (wt %)
Egypt	Belayim	27.5	2.2
Egypt	El Morgan	29.4	1.7
Egypt	Rhas Gharib	24.3	3.3
Egypt	Gulf of Suez Mix	31.9	1.5
Egypt	Geysum	19.5	NA
Egypt	East Gharib (J-1)	37.9	NA
Egypt	Mango-1	35.1	NA
Egypt	Rhas Budran	25	NA
Egypt	Zeit Bay	34.1	0.1
Egypt	East Zeit Mix	39	0.87
Equatorial Guinea	Zafiro	30.3	NA
Equatorial Guinea	Alba Condensate	55	NA
Equatorial Guinea	Ceiba	30.1	0.42
Gabon	Gamba	31.8	0.1
Gabon	Mandji	30.5	1.1
Gabon	Lucina Marine	39.5	0.1
Gabon	Oguendjo	35	NA
Gabon	Rabi-Kouanga	34	0.6
Gabon	T'Catamba	44.3	0.21
Gabon	Rabi	33.4	0.06
Gabon	Rabi Blend	34	NA
Gabon	Rabi Light	37.7	0.15
Gabon	Etame Marin	36	NA

Country	Feedstock trade name	API	Sulphur (wt %)
Gabon	Olende	17.6	1.54
Gabon	Gabonian Miscellaneous	NA	NA
Georgia	Georgian Miscellaneous	NA	NA
Ghana	Bonsu	32	0.1
Ghana	Salt Pond	37.4	0.1
Guatemala	Coban	27.7	NA
Guatemala	Rubelsanto	27	NA
India	Bombay High	39.4	0.2
Indonesia	Minas (Sumatron Light)	34.5	0.1
Indonesia	Ardjuna	35.2	0.1
Indonesia	Attaka	42.3	0.1
Indonesia	Suri	18.4	0.2
Indonesia	Sanga Sanga	25.7	0.2
Indonesia	Sepinggan	37.9	0.9
Indonesia	Walio	34.1	0.7
Indonesia	Arimbi	31.8	0.2
Indonesia	Poleng	43.2	0.2
Indonesia	Handil	32.8	0.1
Indonesia	Jatibarang	29	0.1
Indonesia	Cinta	33.4	0.1
Indonesia	Bekapai	40	0.1
Indonesia	Katapa	52	0.1
Indonesia	Salawati	38	0.5
Indonesia	Duri (Sumatran Heavy)	21.1	0.2

Country	Feedstock trade name	API	Sulphur (wt
			%)
Indonesia	Sembakung	37.5	0.1
Indonesia	Badak	41.3	0.1
Indonesia	Arun Condensate	54.5	NA
Indonesia	Udang	38	0.1
Indonesia	Klamono	18.7	1
Indonesia	Bunya	31.7	0.1
Indonesia	Pamusian	18.1	0.2
Indonesia	Kerindigan	21.6	0.3
Indonesia	Melahin	24.7	0.3
Indonesia	Bunyu	31.7	0.1
Indonesia	Camar	36.3	NA
Indonesia	Cinta Heavy	27	NA
Indonesia	Lalang	40.4	NA
Indonesia	Kakap	46.6	NA
Indonesia	Sisi-1	40	NA
Indonesia	Giti-1	33.6	NA
Indonesia	Ayu-1	34.3	NA
Indonesia	Bima	22.5	NA
Indonesia	Padang Isle	34.7	NA
Indonesia	Intan	32.8	NA
Indonesia	Sepinggan - Yakin Mixed	31.7	0.1
Indonesia	Widuri	32	0.1
Indonesia	Belida	45.9	0
Indonesia	Senipah	51.9	0.03
Iran	Iranian Light	33.8	1.4

Country	Feedstock trade name	API	Sulphur (wt
			%)
Iran	Iranian Heavy	31	1.7
Iran	Soroosh (Cyrus)	18.1	3.3
Iran	Dorrood (Darius)	33.6	2.4
Iran	Rostam	35.9	1.55
Iran	Salmon (Sassan)	33.9	1.9
Iran	Foroozan (Fereidoon)	31.3	2.5
Iran	Aboozar (Ardeshir)	26.9	2.5
Iran	Sirri	30.9	2.3
Iran	Bahrgansar/Nowruz (SIRIP Blend)	27.1	2.5
Iran	Bahr/Nowruz	25.0	2.5
Iran	Iranian Miscellaneous	NA	NA
Iraq	Basrah Light (Pers. Gulf)	33.7	2
Iraq	Kirkuk (Pers. Gulf)	35.1	1.9
Iraq	Mishrif (Pers. Gulf)	28	NA
Iraq	Bai Hasson (Pers. Gulf)	34.1	2.4
Iraq	Basrah Medium (Pers. Gulf)	31.1	2.6
Iraq	Basrah Heavy (Pers. Gulf)	24.7	3.5
Iraq	Kirkuk Blend (Pers. Gulf)	35.1	2
Iraq	N. Rumalia (Pers. Gulf)	34.3	2
Iraq	Ras el Behar	33	NA
Iraq	Basrah Light (Red Sea)	33.7	2
Iraq	Kirkuk (Red Sea)	36.1	1.9
Iraq	Mishrif (Red Sea)	28	NA
Iraq	Bai Hasson (Red Sea)	34.1	2.4

Country	Feedstock trade name	API	Sulphur (wt
			%)
Iraq	Basrah Medium (Red Sea)	31.1	2.6
Iraq	Basrah Heavy (Red Sea)	24.7	3.5
Iraq	Kirkuk Blend (Red Sea)	34	1.9
Iraq	N. Rumalia (Red Sea)	34.3	2
Iraq	Ratawi	23.5	4.1
Iraq	Basrah Light (Turkey)	33.7	2
Iraq	Kirkuk (Turkey)	36.1	1.9
Iraq	Mishrif (Turkey)	28	NA
Iraq	Bai Hasson (Turkey)	34.1	2.4
Iraq	Basrah Medium (Turkey)	31.1	2.6
Iraq	Basrah Heavy (Turkey)	24.7	3.5
Iraq	Kirkuk Blend (Turkey)	34	1.9
Iraq	N. Rumalia (Turkey)	34.3	2
Iraq	FAO Blend	27.7	3.6
Kazakhstan	Kumkol	42.5	0.07
Kazakhstan	CPC Blend	44.2 NA	0.54
Kuwait	Mina al Ahmadi (Kuwait Export)	31.4	2.5
Kuwait	Magwa (Lower Jurassic)	38	NA
Kuwait	Burgan (Wafra)	23.3	3.4
Libya	Bu Attifel	43.6	0
Libya	Amna (high pour)	36.1	0.2
Libya	Brega	40.4	0.2

Country	Feedstock trade name	API	Sulphur (wt
			%)
Libya	Sirtica	43.3	0.43
Libya	Zueitina	41.3	0.3
Libya	Bunker Hunt	37.6	0.2
Libya	El Hofra	42.3	0.3
Libya	Dahra	41	0.4
Libya	Sarir	38.3	0.2
Libya	Zueitina Condensate	65	0.1
Libya	El Sharara	42.1	0.07
Malaysia	Miri Light	36.3	0.1
Malaysia	Tembungo	37.5	NA
Malaysia	Labuan Blend	33.2	0.1
Malaysia	Tapis	44.3	0.1
Malaysia	Tembungo	37.4	0
Malaysia	Bintulu	26.5	0.1
Malaysia	Bekok	49	NA
Malaysia	Pulai	42.6	NA
Malaysia	Dulang	39	0.037
Mauritania	Chinguetti	28.2	0.51
Mexico	Isthmus	32.8	1.5
Mexico	Maya	22	3.3
Mexico	Olmeca	39	NA
Mexico	Altamira	16	NA
Mexico	Topped Isthmus	26.1	1.72
Netherlands	Alba	19.59	NA

Feedstock trade name	API	Sulphur (wt
		%)
Eocene (Wafra)	18.6	4.6
Hout	32.8	1.9
Khafji	28.5	2.9
Burgan (Wafra)	23.3	3.4
Ratawi	23.5	4.1
Neutral Zone Mix	23.1	NA
Khafji Blend	23.4	3.8
Forcados Blend	29.7	0.3
Escravos	36.2	0.1
Brass River	40.9	0.1
Qua Iboe	35.8	0.1
Bonny Medium	25.2	0.2
Pennington	36.6	0.1
Bomu	33	0.2
Bonny Light	36.7	0.1
Brass Blend	40.9	0.1
Gilli Gilli	47.3	NA
Adanga	35.1	NA
Iyak-3	36	NA
Antan	35.2	NA
OSO	47	0.06
Ukpokiti	42.3	0.01
Yoho	39.6	NA
Okwori	36.9	NA
	Eocene (Wafra) Hout Khafji Burgan (Wafra) Ratawi Neutral Zone Mix Khafji Blend Forcados Blend Escravos Brass River Qua Iboe Bonny Medium Pennington Bomu Bonny Light Brass Blend Gilli Gilli Adanga Iyak-3 Antan OSO Ukpokiti Yoho	Eocene (Wafra) 18.6 Hout 32.8 Khafji 28.5 Burgan (Wafra) 23.3 Ratawi 23.5 Neutral Zone Mix 23.1 Khafji Blend 23.4 Forcados Blend 29.7 Escravos 36.2 Brass River 40.9 Qua Iboe 35.8 Bonny Medium 25.2 Pennington 36.6 Bomu 33 Bonny Light 36.7 Brass Blend 40.9 Gilli Gilli 47.3 Adanga 35.1 Iyak-3 36 Antan 35.2 OSO 47 Ukpokiti 42.3 Yoho 39.6

Country	Feedstock trade name	API	Sulphur (wt
			%)
Nigeria	Bonga	28.1	NA
Nigeria	ERHA	31.7	0.21
Nigeria	Amenam Blend	39	0.09
Nigeria	Akpo	45.17	0.06
Nigeria	EA	38	NA
Nigeria	Agbami	47.2	0.044
Norway	Ekofisk	43.4	0.2
Norway	Tor	42	0.1
Norway	Statfjord	38.4	0.3
Norway	Heidrun	29	NA
Norway	Norwegian Forties	37.1	NA
Norway	Gullfaks	28.6	0.4
Norway	Oseberg	32.5	0.2
Norway	Norne	33.1	0.19
Norway	Troll	28.3	0.31
Norway	Draugen	39.6	NA
Norway	Sleipner Condensate	62	0.02
Oman	Oman Export	36.3	0.8
Papua New Guinea	Kutubu	44	0.04
Peru	Loreto	34	0.3
Peru	Talara	32.7	0.1
Peru	High Cold Test	37.5	NA
Peru	Bayovar	22.6	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Peru	Low Cold Test	34.3	NA
Peru	Carmen Central-5	20.7	NA
Peru	Shiviyacu-23	20.8	NA
Peru	Mayna	25.7	NA
Philippines	Nido	26.5	NA
Philippines	Philippines Miscellaneous	NA	NA
Qatar	Dukhan	41.7	1.3
Qatar	Qatar Marine	35.3	1.6
Qatar	Qatar Land	41.4	NA
Ras Al Khaimah	Rak Condensate	54.1	NA
Ras Al Khaimah	Ras Al Khaimah	NA	NA
	Miscellaneous		
Russia	Urals	31	2
Russia	Russian Export Blend	32.5	1.4
Russia	M100	17.6	2.02
Russia	M100 Heavy	16.67	2.09
Russia	Siberian Light	37.8	0.4
Russia	E4 (Gravenshon)	19.84	1.95
Russia	E4 Heavy	18	2.35
Russia	Purovsky Condensate	64.1	0.01
Russia	Sokol	39.7	0.18
Saudi Arabia	Light (Pers. Gulf)	33.4	1.8
Saudi Arabia	Heavy (Pers. Gulf) (Safaniya)	27.9	2.8
Saudi Arabia	Medium (Pers. Gulf) (Khursaniyah)	30.8	2.4

Country	Feedstock trade name	API	Sulphur (wt
			%)
Saudi Arabia	Extra Light (Pers. Gulf)	37.8	1.1
	(Berri)		
Saudi Arabia	Light (Yanbu)	33.4	1.2
Saudi Arabia	Heavy (Yanbu)	27.9	2.8
Saudi Arabia	Medium (Yanbu)	30.8	2.4
Saudi Arabia	Berri (Yanbu)	37.8	1.1
Saudi Arabia	Medium (Zuluf/Marjan)	31.1	2.5
Sharjah	Mubarek. Sharjah	37	0.6
Sharjah	Sharjah Condensate	49.7	0.1
Singapore	Rantau	50.5	0.1
Spain	Amposta Marina North	37	NA
Spain	Casablanca	34	NA
Spain	El Dorado	26.6	NA
Syria	Syrian Straight	15	NA
Syria	Thayyem	35	NA
Syria	Omar Blend	38	NA
Syria	Omar	36.5	0.1
Syria	Syrian Light	36	0.6
Syria	Souedie	24.9	3.8
Thailand	Erawan Condensate	54.1	NA
Thailand	Sirikit	41	NA
Thailand	Nang Nuan	30	NA
Thailand	Bualuang	27	NA
Thailand	Benchamas	42.4	0.12
Trinidad and	Galeota Mix	32.8	0.3

Country	Feedstock trade name	API	Sulphur (wt %)
Tobago			
Trinidad and Tobago	Trintopec	24.8	NA
Trinidad and Tobago	Land/Trinmar	23.4	1.2
Trinidad and Tobago	Calypso Miscellaneous	30.84	0.59
Tunisia	Zarzaitine	41.9	0.1
Tunisia	Ashtart	29	1
Tunisia	El Borma	43.3	0.1
Tunisia	Ezzaouia-2	41.5	NA
Turkey	Turkish Miscellaneous	NA	NA
Ukraine	Ukraine Miscellaneous	NA	NA
United Kingdom	Auk	37.2	0.5
United Kingdom	Beatrice	38.7	0.05
United Kingdom	Brae	33.6	0.7
United Kingdom	Buchan	33.7	0.8
United Kingdom	Claymore	30.5	1.6
United Kingdom	S.V. (Brent)	36.7	0.3
United Kingdom	Tartan	41.7	0.6
United Kingdom	Tern	35	0.7
United Kingdom	Magnus	39.3	0.3
United Kingdom	Dunlin	34.9	0.4
United Kingdom	Fulmar	40	0.3
United Kingdom	Hutton	30.5	0.7

Country	Feedstock trade name	API	Sulphur (wt
			%)
United Kingdom	N.W. Hutton	36.2	0.3
United Kingdom	Maureen	35.5	0.6
United Kingdom	Murchison	38.8	0.3
United Kingdom	Ninian Blend	35.6	0.4
United Kingdom	Montrose	40.1	0.2
United Kingdom	Beryl	36.5	0.4
United Kingdom	Piper	35.6	0.9
United Kingdom	Forties	36.6	0.3
United Kingdom	Brent Blend	38	0.4
United Kingdom	Flotta	35.7	1.1
United Kingdom	Thistle	37	0.3
United Kingdom	S.V. (Ninian)	38	0.3
United Kingdom	Argyle	38.6	0.2
United Kingdom	Heather	33.8	0.7
United Kingdom	South Birch	38.6	NA
United Kingdom	Wytch Farm	41.5	NA
United Kingdom	Cormorant. North	34.9	0.7
United Kingdom	Cormorant. South (Cormorant "A")	35.7	0.6
United Kingdom	Alba	19.2	NA
United Kingdom	Foinhaven	26.3	0.38
United Kingdom	Schiehallion	25.8	NA
United Kingdom	Captain	19.1	0.7
United Kingdom	Harding	20.7	0.59
US Alaska	ANS	NA	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
US Colorado	Niobrara	NA	NA
US New Mexico	Four Corners	NA	NA
US North Dakota	Bakken	NA	NA
US North Dakota	North Dakota Sweet	NA	NA
US Texas	WTI	NA	NA
US Texas	Eagle Ford	NA	NA
US Utah	Covenant	NA	NA
US Federal OCS	Beta	NA	NA
US Federal OCS	Carpinteria	NA	NA
US Federal OCS	Dos Cuadras	NA	NA
US Federal OCS	Hondo	NA	NA
US Federal OCS	Hueneme	NA	NA
US Federal OCS	Pescado	NA	NA
US Federal OCS	Point Arguello	NA	NA
US Federal OCS	Point Pedernales	NA	NA
US Federal OCS	Sacate	NA	NA
US Federal OCS	Santa Clara	NA	NA
US Federal OCS	Sockeye	NA	NA
Uzbekistan	Uzbekistan Miscellaneous	NA	NA
Venezuela	Jobo (Monagas)	12.6	2
Venezuela	Lama Lamar	36.7	1
Venezuela	Mariago	27	1.5
Venezuela	Ruiz	32.4	1.3
Venezuela	Tucipido	36	0.3
Venezuela	Venez Lot 17	36.3	0.9

Country	Feedstock trade name	API	Sulphur (wt
			%)
Venezuela	Mara 16/18	16.5	3.5
Venezuela	Tia Juana Light	32.1	1.1
Venezuela	Tia Juana Med 26	24.8	1.6
Venezuela	Officina	35.1	0.7
Venezuela	Bachaquero	16.8	2.4
Venezuela	Cento Lago	36.9	1.1
Venezuela	Lagunillas	17.8	2.2
Venezuela	La Rosa Medium	25.3	1.7
Venezuela	San Joaquin	42	0.2
Venezuela	Lagotreco	29.5	1.3
Venezuela	Lagocinco	36	1.1
Venezuela	Boscan	10.1	5.5
Venezuela	Leona	24.1	1.5
Venezuela	Barinas	26.2	1.8
Venezuela	Sylvestre	28.4	1
Venezuela	Mesa	29.2	1.2
Venezuela	Ceuta	31.8	1.2
Venezuela	Lago Medio	31.5	1.2
Venezuela	Tigre	24.5	NA
Venezuela	Anaco Wax	41.5	0.2
Venezuela	Santa Rosa	49	0.1
Venezuela	Bombai	19.6	1.6
Venezuela	Aguasay	41.1	0.3
Venezuela	Anaco	43.4	0.1
Venezuela	BCF-Bach/Lag17	16.8	2.4

Country	Feedstock trade name	API	Sulphur (wt
			%)
Venezuela	BCF-Bach/Lag21	20.4	2.1
Venezuela	BCF-21.9	21.9	NA
Venezuela	BCF-24	23.5	1.9
Venezuela	BCF-31	31	1.2
Venezuela	BCF Blend	34	1
Venezuela	Bolival Coast	23.5	1.8
Venezuela	Ceuta/Bach 18	18.5	2.3
Venezuela	Corridor Block	26.9	1.6
Venezuela	Cretaceous	42	0.4
Venezuela	Guanipa	30	0.7
Venezuela	Lago Mix Med.	23.4	1.9
Venezuela	Larosa/Lagun	23.8	1.8
Venezuela	Menemoto	19.3	2.2
Venezuela	Cabimas	20.8	1.8
Venezuela	BCF-23	23	1.9
Venezuela	Oficina/Mesa	32.2	0.9
Venezuela	Pilon	13.8	2
Venezuela	Recon (Venez)	34	NA
Venezuela	102 Tj (25)	25	1.6
Venezuela	Tjl Cretaceous	39	0.6
Venezuela	Tia Juana Pesado (Heavy)	12.1	2.7
Venezuela	Mesa-Recon	28.4	1.3
Venezuela	Oritupano	19	2
Venezuela	Hombre Pintado	29.7	0.3
Venezuela	Merey	17.4	2.2

Country	Feedstock trade name	API	Sulphur (wt
			%)
Venezuela	Lago Light	41.2	0.4
Venezuela	Laguna	11.2	0.3
Venezuela	Bach/Cueta Mix	24	1.2
Venezuela	Bachaquero 13	13	2.7
Venezuela	Ceuta – 28	28	1.6
Venezuela	Temblador	23.1	0.8
Venezuela	Lagomar	32	1.2
Venezuela	Taparito	17	NA
Venezuela	BCF-Heavy	16.7	NA
Venezuela	BCF-Medium	22	NA
Venezuela	Caripito Blend	17.8	NA
Venezuela	Laguna/Ceuta Mix	18.1	NA
Venezuela	Morichal	10.6	NA
Venezuela	Pedenales	20.1	NA
Venezuela	Quiriquire	16.3	NA
Venezuela	Tucupita	17	NA
Venezuela	Furrial-2 (E. Venezuela)	27	NA
Venezuela	Curazao Blend	18	NA
Venezuela	Santa Barbara	36.5	NA
Venezuela	Cerro Negro	15	NA
Venezuela	BCF22	21.1	2.11
Venezuela	Hamaca	26	1.55
Venezuela	Zuata 10	15	NA
Venezuela	Zuata 20	25	NA
Venezuela	Zuata 30	35	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Venezuela	Monogas	15.9	3.3
Venezuela	Corocoro	24	NA
Venezuela	Petrozuata	19.5	2.69
Venezuela	Morichal 16	16	NA
Venezuela	Guafita	28.6	0.73
Vietnam	Bach Ho (White Tiger)	38.6	0
Vietnam	Dai Hung (Big Bear)	36.9	0.1
Vietnam	Rang Dong	37.7	0.5
Vietnam	Ruby	35.6	0.08
Vietnam	Su Tu Den (Black Lion)	36.8	0.05
Yemen	North Yemeni Blend	40.5	NA
Yemen	Alif	40.4	0.1
Yemen	Maarib Lt.	49	0.2
Yemen	Masila Blend	30-31	0.6
Yemen	Shabwa Blend	34.6	0.6
Any	Oil shale	NA	NA
Any	Shale oil	NA	NA
Any	Natural Gas: piped from source	NA	NA
Any	Natural Gas: from LNG	NA	NA
Any	Shale gas: piped from source	NA	NA
Any	Coal	NA	NA

Annex II

Calculation of the baseline greenhouse gas intensity of fossil fuels

Methodology

(a) The baseline greenhouse gas intensity is calculated based on Union average fossil fuel consumption of petrol, diesel, gasoil, LPG and CNG, where:

Baseline greenhouse gas intensity calculation

=

$$\frac{\sum_{x} (GHGi_{x} \times MJ_{x})}{\sum_{x} MJ_{x}}$$

Where:

x represents the different fuels and energy carriers falling within the scope of the Directive and as defined in the table below

 $GHGi_x$ is the unit greenhouse gas intensity of the annual supply sold on the market of fuel x or energy carrier falling within the scope of this Directive expressed in gCO_2eq/MJ . The values for fossil fuels presented in Annex I Part 2 point (5) are used.

 MJ_x is the total energy supplied and converted from reported volumes of fuel x expressed in Mega Joules.

(b) Consumption data

The consumption data used for calculation of the value is as follows:

Fuel	Energy Consumption (MJ)	Source
diesel	7 894 969 x 10 ⁶	
non-road gasoil	$240\ 763\ x\ 10^6$	2010 Member States reporting to
		UNFCCC
petrol	3 844 356 x 10 ⁶	UNFCCC
LPG	$217\ 563\ x\ 10^6$	
CNG	$51\ 037\ x\ 10^6$	

Greenhouse gas intensity

The greenhouse gas intensity for 2010 shall be: 94.1 gCO₂eq/MJ

Annex III

Member State reporting to the Commission

- 1. Member States report by 30 June each year the data listed in point 3. Data must be reported for all fuel and energy placed on the market in the Member State. Where multiple biofuels are blended with fossil fuels, the data for each biofuel must be provided.
- 2. The data listed in point 3 is reported separately for fuel or energy placed on the market by suppliers within a Member State (including joint suppliers operating in a single Member State) and supply placed on the markets of two or multiple Member States by joint suppliers (inter-Member State joint suppliers). Inter-Member State joint supplier data must be further disaggregated to the level of the Member State of each joining supplier.
- 3. For each fuel, Member States report the following data to the Commission aggregated according to point 2 and as defined in Annex I:
 - (a) Fuel or energy type;
 - (b) Volume or quantity of electric energy;
 - (c) Greenhouse gas intensity;
 - (d) Upstream emission reductions;
 - (e) Origin;
 - (f) Place of purchase.

Annex IV

Template for reporting information for consistency of the reported data

FUEL - SINGLE SUPPLIERS

Entry	Joint Reporting (YES/NO)	Country	Supplier ¹	Fuel type ⁷	Fuel CN code ⁷	Qua	ntity ² by energy	Average GHG intensity	Upstream Emission Reduction ⁵	Reduction on 2010 average
1										
		CN code	GHG intensity ⁴	Feedstock	CN code	GHG intensity ⁴	sustainable (YES/NO)			
	· -	nent F.1 (Fos Component)		Compo	nent B.1 (E	Biofuel Comp	oonent)			
		ent F.n (Fos		Compo	nent B.m (I	Biofuel Com	ponent)			
		Component)								
Entry	Joint Reporting (YES/NO)	Country	Supplier ¹	Fuel type ⁷	Fuel CN	Qua by litres	ntity ²	Average GHG intensity	Upstream Emission	Reduction on 2010
k	, ,									
	k	CN code ²	GHG intensity ⁴	Feedstock	CN code ²	GHG intensity ⁴	sustainable (YES/NO)			
		nent F.1 (Fos Component)		Compo	nent B.1 (F	Biofuel Comp	onent)			
		nent F.n (Fos Component)	ssil Fuel	Compo	nent B.m (I	Biofuel Com	ponent)			

FUEL - JOINT SUPPLIERS

.

Entry	Joint Reporting (YES/NO)	Country	Supplier ¹	Fuel type ⁷	Fuel CN code ⁷	Qua	ntity ² by energy	Average GHG intensity	Upstream Emission Reduction ⁵	Reduction on 2010 average
I	YES									
	YES									
		Subtotal CN code	GHG intensity ⁴	Feedstock	CN code	GHG intensity ⁴	sustainable (YES/NO)			
		nent F.1 (Fos	ssil Fuel	Compo	onent B.1 (E	Biofuel Comp	ponent)			
	-	nent F.n (Fos Component)		Compo	nent B.m (I	Biofuel Com	ponent)			
Entry	Joint Reporting (YES/NO)	Country	Supplier ¹	Fuel type ⁷	Fuel CN	Qua by litres	ntity ² by energy	Average GHG intensity	Upstream Emission	Reduction on 2010 average
X	YES YES							intensity	Reduction	average
		Subtotal								
		CN code ²	GHG intensity ⁴	Feedstock	CN code ²	GHG intensity ⁴	sustainable (YES/NO)			
		nent F.1 (Fos Component)		Compo	onent B.1 (F	Biofuel Comp	oonent)			
		nent F.n (Fos Component)		Compo	nent B.m (I	Biofuel Com	ponent)			

ELECTRICITY

Joint Reporting		Supplier ¹	Energy type	Quantity ⁶	GHG intensity	Reduction on 2010
(YES/NO)	Country			by energy	interiorty	average
NO						

Joint Supp	lier Informat	ion				
		Supplier ¹	Energy type	Quantity ⁶	GHG	Reduction
	Country	Supplier	7	by energy	intensity	on 2010
YES						
YES						
	Subtotal					

ORIGIN – SINGLE SUPPLIERS⁸

Entry 1	compon	ent F.1	Entry 1	compone	ent F.n	Entry k	compon	ent F.1	Entry k	compone	ent F.n
Feedstock Trade Name	API density ³	Tonnes									
Entry 1	compon	ent B.1	Entry 1	compone	nt B.m	Entry k	compon	ent B.1	Entry k	compone	nt B.m
Bio Pathway	API density ³	Tonnes									
						<u> </u>					

ORIGIN – JOINT SUPPLIERS⁸

Entry I	compon	ent F.1	Entry I	component F.n		Entry X	compon	ent F.1	Entry X	component F.n		
Feedstock			Feedstock			Feedstock			Feedstock			
Trade	API density 3	Tonnes	Trade	API density 3	Tonnes	Trade	API density 3	Tonnes	Trade	API density 3	Tonnes	
Name			Name			Name			Name			
	1											
									İ			
					1							
<u> </u>	1											
	-											
					l							
ĺ												
Entry I	compon	ent B.1	Entry I	compone	nt B.m	Entry X	compon	ent B.1	Entry X	compone	nt B.m	
Entry I	compon		Entry I	compone		Entry X	compon		Entry X	compone		
Bio	compon	ent B.1 Tonnes	Bio	compone	nt B.m Tonnes	Bio	compon	ent B.1 Tonnes	Bio	compone	nt B.m Tonnes	
Entry I Bio Pathway			Entry I Bio Pathway			Entry X Bio Pathway			Entry X Bio Pathway			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			
Bio			Bio			Bio			Bio			

PLACE OF PURCHASE⁹

.

Entry	Componen t	Refinery/ Processing Facility Names	Country										
1	F.1												
1	F.n												
1	B.1												
1	B.m												
k	F.1												
k	F.n												
k	B.1												
k	B.m												
ı	F.1												
ı	F.n												
ı	B.1												
ı	B.m												
Х	F.1												
Х	F.n												
Х	B.1												
Х	B.m												

TOTAL ENERGY REPORTED AND REDUCTION ACHIEVED PER MEMBER STATE

on 20	n on

FORMAT NOTES

Template for supplier reporting is identical to the template for Member State reporting.

Shaded cells do not have to be filled in.

- 1. Supplier identification is defined in Annex I Part 1 point 4(a);
- 2. Quantity of fuel is defined in Annex I Part 1 point 4(c);
- 3. API density is defined pursuant to testing method ASTM D287;
- 4. Greenhouse gas intensity is defined in Annex I Part 1 point 4(e);
- 5. Upstream emission reduction is defined in Annex I Part 1 point 4(d); reporting specifications are defined in Annex I Part 2 point (1)
- 6. Quantity of electricity is defined in Annex I Part 2 point (6);
- 7. Fuel types and corresponding CN codes are defined in Annex I Part 1 point 4(b);
- 8. Origin is defined in Annex I Part 2 point (2) and Annex I Part 2 point (4);
- 9. Place of Purchase is defined in Annex I Part 2 point (3) and Annex I Part 2 point (4);
- 10. Total volume may exceed the total volume of actual fuel and electric energy consumed as this sum could include volumes from suppliers reporting jointly with suppliers from other Member States.